solar power

now browsing by category

 

Parabolic Solar Mirrors

parabolic mirror

One Minute Grill Cheese – the power!

How to make a parabolic mirror the cheap way.

Make a parabolic mirror with a Mylar emergency blanket and a garbage can lid! I like this guy!

The website you MUST go to if you are interested in FREE POWER!

They have many, many, many videos that run the gambit from making butter in under a minute to how to make your own solar panels and so much more!

http://www.greenpowerscience.com/

The WE2s on Solar Cooking

sun oven pic

Since Bev has asked, I’ll add my own experiences with my SunOven…which I adore!  As I’ve mentioned (I’m sure) I love my SunOven. We were somewhat new at this type of thing so we just bought what we believed was the best and at the time we had the funds to do so.

So far we haven’t taken it camping because we don’t want to leave it unattended…someone might think it would be a good thing to put in their truck or the trunk of their car and you never know about them varmints called racoons etc. :-( I’ve also not cooked in it during the snow etc….yet, but have been assured by the manufacturer and others who have, that it cooks just fine although you may have to rotate it to keep it in the direction of the sun.

As for my experiences, I’ve just set it on top of a small table in the back yard, without any legs to tip it forward etc., and then let the sun do it’s thing. I haven’t had to rotate it or anything, just let the sun shine in :-) I’ve only used my graniteware in my solar oven, but have got a couple of small bread loaf pans that are very dark colored and I plan to try them out for bread. I use several different sized (I picked up graniteware every chance it go) roasters with lids, and since I use graniteware in our RV I have several pie tins, plates, cups and a coffee pot. Everything will fit into my solar oven except my coffee pot, but that’s okay…it’ll cook quicker on the outside grill :-) Sun Oven-frozen pork loin and veggies 100_3791

I’m attaching a picture of a raw pork roast that I put into my solar oven along with vegetables etc. that took about 4 hours to cook thoroughly and was absolutely fork tender & so moist you wouldn’t believe it, but I’m sure it wouldn’t have burned if I’d left it all day. The only thing I’ve learned is that I DO NOT have to add water. So on this particular occasion, I just took the juice that it created and made gravy out of it.

Because of my solar oven, our Coleman 2-burner cook stove with an oven that fits on top, and lots of propane, and a single burner butane stove (like they use in chinese restaurants etc.) I’ve been slow in approaching other sources of cooking. We do plan to purchase a StoveTec-type stove though because (as we’ve been experimenting with around SCP) we believe it would be safe to use inside with gel candles, t-lights, votive candles etc. Also easy enough to move outside to burn wood or charcoal, perhaps even some wood chips.

Either way we look at it, solar is about the cheapest source of cooking and supplementing your heat there is. Right now, we’re not too interested in providing electricity via solar. The Roost is small enough and not situated in the right direction, for us to install panels on it’s roof…and in a SHTF situation would be a signal that we have some sort of power, as well as if we set up panels outside they’d probably get stolen or deliberately damaged. Same for our solar oven, don’t want to set it out even at the Roost where it could be stolen.

As a ps…we also own one of the “oil less” cookers (electric) that’s also another great addition to your cooking alternatives and can also dehydrate…as long as you have electricity of some sort. What’s that old saying?  “try it you’ll like it”!

Greetings from wifey and MrWE2!

Pop Can Solar Heaters!

pop can solar heater

 

WOW! Have a pop or a beer and heat too?!

Yes, you CAN have it all! LOL  :-D

And More!

And More!!!

And YES MORE!!!

Inspired? I am too!

Coming soon, Bev’s version of a passive solar Pepsi can heater…

YouTube Video: Getting started in solar power……

Here is a video on a simple solar system to get started with.

  – Rourke

 

 

Affordable Auxiliary Solar Arrays

This article was originally published over at ModernSurvivalOnline as part of an ongoing preparedness writing contest. It can be seen in its original form HERE.

 

Affordable Auxiliary Solar Arrays

By John from Iowa

Editor-at-Large

 

The first thing to remember is that solar is not cheap! The power is free and sustainable, but it’s costly to get there. A person can spend as much money as they want in that direction. I did not go whole hog on my system, as I wanted primarily the ability to power a few small appliances, and mainly a power source to recharge my rechargeable batteries. I have a couple of systems setup in different locations, as well as the ability to setup portable arrays if needed.

 

My main array consists of 4 – 85 watt and 1 – 30 watt panel. It is located on the southern side of a utility building that I have.

 OLYMPUS DIGITAL CAMERA

 

These run to a 21 amp ICP charge regulator/controller that also gives the status of the bank of batteries,OLYMPUS DIGITAL CAMERA

 ICP Charge Controller

 

then it runs to a bank of 8 – 12v deep cycle marine batteries.

Tied to that I have a 2,000 watt power inverter for the 110 household type current,

OLYMPUS DIGITAL CAMERA

Power Inverter to make household type 110v current

 

 

There are also 2 – 12v cigarette lighter type sockets to have the ability to run 12v appliances, if needed or desired. There are fry pans, ovens, coffee makers, etc. available to use.

 

I do have a problem with this system though, in that I really hate to cut trees, as you can’t really replace them in your lifetime. So my system doesn’t get full sun all of the day. It gets about 2/3s of what it could get, but meets my anticipated needs.

 

It will power a small freezer, or a portable ice maker, a 110v chain saw, and many other like items. It will also recharge any type of battery for any application.

 

Secondary Portable Array

 

I also have a secondary array at a nearby building that is not used to its full potential, but is primarily a backup system. It consists of 1- 85 watt panel, and 2 – 50 watt folding panels.

 

 OLYMPUS DIGITAL CAMERA

A folding panel showing polarized plugs

OLYMPUS DIGITAL CAMERA

Front view of a folding panel

 

They run to another smaller charge regulator/controller and only 2 – 12v deep cycle batteries. This then runs to another 2,000 watt inverter that is actually a backup in case of a failure of my primary unit. The panels on this array can be plugged into the main array by the use of polarized two way plugs, making it very modular for increasing power to the main system.

OLYMPUS DIGITAL CAMERA

The hooks for adding folding cells to the main array

 

Separate Off-Grid Building with Solar Power

At my pond I have a shelter house on which I mounted a 30 watt solar panel.

OLYMPUS DIGITAL CAMERA

30 watt panel mounted to the southern edge of the shelter house roof at the pond

 

 

Then it runs to a smaller charge regulator/controller.

 OLYMPUS DIGITAL CAMERA

Charge Controller at the Pond array also shows battery status

 

 

 OLYMPUS DIGITAL CAMERA

Ribbon gauge showing battery status separately

 

Then it runs to only 1 – 12v deep cycle battery. This runs out to 12v RV type lights in the ceiling of the shelter house, as well as a couple of cigarette lighter 12v socket outlets. I can plug in a 400 watt inverter to the 12v system and produce 110v power for most small appliances that I might use there.

 

Totally Portable Solar Set-Up

 

Last, but not least, I have several smaller panel setups that are extremely portable and powerful that can provide 12v power just about anywhere that has sun exposure.

As I mentioned in the beginning, this stuff isn’t cheap. It was done over a long period of time, so it became more affordable. I started very small with a couple of the Volkswagen solar cells, a plastic battery box that had a built in12v lighter socket and external terminals, and of course a deep cycle battery, added to that a splitter that allowed multiple lighter sockets for plugging in 2 panels or for multiple power out plugs.

 

 

 OLYMPUS DIGITAL CAMERA

Battery box showing 12v outlet, fused reset button, and charge condition ribbon gauge on top of the box

OLYMPUS DIGITAL CAMERA

The battery power box that holds the deep cycle battery

 

 

 OLYMPUS DIGITAL CAMERA

Full starter set showing 2 Volkswagen cells and outlet splitter

In the future I will post some Do’s and Don’ts as well as some tips for use. There is much to know about solar, but it isn’t as complicated as most might think, at least for the smaller setups like mine.

 

Piecing together a spanking-new $600 solar-electric system

This article was originally published over at Countryside Magazine. It can be seen in its original form HERE.

Piecing together a spanking-new
$600 solar-electric system

by Rex A. Ewing

Colorado

 

Got 600 bucks hiding in an old book somewhere? Maybe it’s time to bring electricity into that little homestead you’ve got tucked away in the woods. But wait a minute, you say, with justifiable hesitancy. Solar-electric systems all cost thousands, don’t they? No, just the expensive ones.

Would you like to run a few lights, maybe a tv/DVD combo or a small computer? How about some moderately-sized power tools? An investment of $600 will get you there with all new components, as long as you don’t crank your expectations up too high. How? Read on.

First off, for the sake of simplicity we’ll assume the system is for either a generator-run workshop, or a weekend cabin, since that’s really where a $600 solar system belongs. In this way the PV module can spend more time collecting energy than you’ll spend using it, so you can invest less money in energy production (PV modules) and more money in energy storage (batteries).

But what components do you need to buy, and how much are they going to set you back? Fifteen minutes of surfing on the Internet turned up the following items. I’m sure a more thorough search would produce even more favorable results:

 

    • One Uni-Solar 32-watt amorphous-silicon PV module, 12 volts: $180.00

 

    • One Morningstar 6-amp charge controller, 12 volts: $40.00

 

    • Two Deka 92 amp-hour sealed batteries, 12 volts: ($130.00 each) $260.00

 

    • One Aims 800-watt modified sine wave inverter, 12 volts: $65.00

TOTAL: $545.00

This leaves you with $55 for wire, battery cables, mounting hardware, fuses between components, and the miscellaneous odds and ends that are always needed for any project of moderate complexity. What can you expect from this bargain-basement system? First I’ll explain the components, then we’ll take it out for a theoretical test drive.

Summing-up the parts

First, the 32-watt amorphous silicon PV module. I chose amorphous silicon, as opposed to crystalline silicon, for its superior Rex_A_Ewing-1performance in low light conditions, since you’ll want to capture every ray of sunlight you can. It’s nominally rated at 32 watts, but for reasons too complicated to explain here, the most power you’ll ever see it produce with a standard charge controller is around 25 watts. This peak production will be for the two or three hours that straddle midday, when the sun is highest in the sky. Though output varies with the seasons, this small module will produce between 0.15 and 0.20 kWh of power each sunny day; considerably less during cloudy periods. So, in a reasonably sunny climate, you should be able to count on about one kWh of energy per week, give or take. What can you do with that much-or that little-energy? Keep reading.

Next in line is the 6-amp charge controller. The positive and negative leads from the PV module go into it, and the + and – leads to the battery come out of it. A simple, inexpensive charge controller like this one does exactly two things: it charges the batteries without overcharging them, and it prevents electrical current from running backwards from the batteries into the PV module during the evening hours. While the latter function could be easily performed by an inexpensive blocking diode, if you want to be able to leave your system for days or weeks at a time, you’ll absolutely need the charge-conditioning capabilities of a charge controller.

Now for the batteries. You’ll want sealed gel-type batteries, even though they’re pricier than flooded lead-acid batteries. Why? Two reasons: first, you won’t have to build a sealed box to keep them in; a box which would have to be vented to the outside to prevent the buildup of flammable hydrogen gas. Secondly, you won’t have to worry about all your water cooking out if you have to leave the system alone for a few months while you’re off exploring the headwaters of the Amazon.

With a rating of 92 amp hours each, the two batteries wired in parallel (+ to +, and – to – ) will store a total 184 amp hours, or 2.2 kWh of power (12 volts x 184 AH = 2,208 watt-hours, or 2.2 kWh). You’ll never be able to use all that power, however. In fact, the most you’ll want to discharge the batteries on a regular basis will be about 50 percent, though if you occasionally have to dip a little deeper into the wattage reserves it certainly won’t hurt anything. To be certain, you should test the batteries from time to time with an inexpensive multi-tester. If they’re below 12.25 volts after sitting idle for a few minutes with no load, they’ll need rest and recharging before being asked to do much more work.

That leaves the inverter. If you only wanted to run a few lights and a TV, or a laptop computer with a car adapter, or even an RV-type water pump, you could get by without the inverter, but the extra cost for DC lights or a 12-volt DC television would probably pay for the inverter, anyway. Besides, you’ll inevitably want to run something that needs 120-volt AC (especially if the system is going in a workshop), so bite the bullet now and buy the thing.

A $65, 800-watt inverter lacks many features common on more expensive inverters, such as battery-charging capabilities, so you won’t be able to plug a gas generator into the inverter to give your batteries a little pick-me-up. Also, the modified sine wave it produces is but a crude approximation of the graceful, undulating waveform the power company (or a fancier inverter) sends through the lines, and some sensitive electronic devices may not work well, at all. But for most of the things most of us use electricity for, the modified-sine-wave inverter will be perfectly satisfactory.

Okay…what can it do?

As you may have noticed, the usable power stored in the two batteries is roughly equal to a week’s output from the single 32-watt PV module, so each week you’ll have around one kilowatt-hour of stored sunlight at your disposal. What can you do with it? One kWh will run a 20-inch tv for 20 hours, a portable stereo for 100 hours, a laptop computer for 40 hours, or a 12-watt compact-fluorescent light bulb for 80 hours.

The 800-watt inverter (with a 2,000-watt surge capacity) will run a small vacuum cleaner, a drill or a small drill press, a sander, a jigsaw or small band saw, but not a large circular saw. It will handle many toasters and coffee makers, but not all. A blender would be child’s play for this inverter, a microwave an impossibility. A hair dryer on low, yes; on high, forget it.

And when I want more?

With the exception of the inverter, this system can be easily expanded. Any number of similar modules can be wired together in parallel, so long as the modules are of the same wattage. The 6-amp charge controller can manage up to three 32-watt modules, and extra charge controllers can be wired into the system, in parallel, as your lust for power begins to swell.

Batteries, of course, are always happy to see their numbers multiply.

But alas, the inverter is what it is. It cannot be connected to another inverter to provide more power (though more expensive models can be), nor can it be configured to operate at a higher input voltage, should you ever get ambitious and change the system voltage to 24 or 48 volts. On the other hand, at $65, does it really matter? A slightly-used 800-watt AC power source that can draw power right off the battery is a handy accessory any vehicle would be proud to have tucked away next to the spare tire.

So, while you’re saving up to buy the deluxe 4000-watt pure sine-wave inverter with battery charging capabilities, enjoy the little $600 starter system that got your foot in the solar-energy door, and try to imagine where it all might lead.

YouTube Video: Harbor Freight Solar Project

YouTube_Icon

New Editor-at-Large Wyzyrd recommended this video regarding solar power. I actually have one of the kits and they are very easy to put together. Great method for getting into solar.

 

Thanks Wyzyrd!

 - Rourke